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Abstract

This paper presents an analysis of buckling/snapping, bending and post-buckling/snapping behaviors of magneto-

elastic–plastic interaction and coupling for soft ferromagnetic beam-plates with geometrically nonlinear deformation

and unmovable simple supports at the ends of the plates. Based on the expression of magnetic force from the variational

principle of ferromagnetic plates, the theory of thin plates with the nonlinear deformation of van Karman�s type, and
the Mises yield criterion and the increment theory for plastic deformation, here, we establish a numerical code to

quantitatively simulate the behaviors of the nonlinearly multi-coupling problems by the finite element method. Along

with that the phenomena of buckling, bending, and post-buckling/snapping, or the characteristic curve of deflection

versus magnitude of applied magnetic fields are numerically displayed, the critical values of buckling/snapping and yield

magnetic fields, and the expansibility of plastic region after the plates undergo plastic deformation with increasing of

the applied magnetic fields, as well as the evolvement of deflection configuration of the plate are numerically obtained in

a case study.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In the past four decades, the electromagnetic materials and structures are extensively employed in high-

technique, e.g., fusion reactor, microelectronics, magnetic levitation, etc., as intelligent materials or element

structures. Following it, much more researches were carried out to find the characteristic of electro-

magneto–mechanical interaction. When applied electromagnetic fields are strong enough to the structures,
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it is necessary to consider those behaviors of mechanics, such as buckling, post-buckling, intensity, dy-

namics, etc., of the structures in the design of safety and function.

Moon and Pao (1968) were the first to conduct the experiment of magneto-elastic buckling of cantile-

vered ferromagnetic beam-plates in a transverse magnetic field, and gave an analytic explanation for
it. Following their work, many researchers paid their attention on the experimental and theoretical

studies of magneto-elastic interaction of ferromagnetic structures in a magnetic field (Pao and Yeh,

1973; Popelar, 1972; Miya et al., 1978, 1980; Eringen, 1989; Zhou et al., 1995; Zhou and Zheng,

1999b; Zhou, 2000; etc., for example). In order to commonly describe those two distinct experimen-

tal phenomena, i.e., the bucking/instability (Moon and Pao, 1968) and the increasing of frequency of

free vibration (Tagaki et al., 1995), Zhou and Zheng (1997, 1999a) proposed a generalized varia-

tional principle to get expressions magnetic forces for the soft ferromagnetic plates and bodies, along

with that they gave some qualitative and quantitative analyses of the experimental phenomena (Zhou et al.,
1995; Zhou and Miya, 1998). In addition, Zhou et al. (1995) demonstrated that the buckling phenome-

non occurs only when the applied magnetic field is in the transverse direction to the flat-plate, while the

plate generates bending deflection when the plate is subjected to an oblique magnetic field. From the

theory of plates, we know that the buckling phenomenon of plates implies that the bending deflec-

tion is generated only when the magnitude of an applied source is larger than a critical value. Then

the deflection increases rapidly even when the applied source has a little of increasing over the critical

value, which is referred to as the well-known post-buckling phenomenon. If a plate undergoes a deflec-

tion no matter how small the applied source is, the model is called as bending. As the applied source
increases, the bending deflection becomes larger till a snapping phenomenon, sometimes, occurs. For

the case of post-buckling/snapping, it is usual that deflection is large enough such that to pursue

the deflection path theoretically, the geometrical nonlinear relation of thin plates should be taken into

account.

Recently, Zhou et al. (2000) gave a numerical analysis of buckling and post-buckling to the ferromag-

netic plates with geometrically nonlinear elastic deformation under applied magnetic fields. Zheng and

Wang (2001) studied similar problem to the ferromagnetic rectangular plates with nonlinear magnetization.

It should note that almost all researches in the magneto-mechanical interaction were conducted for the
elastic deformation of ferromagnetic structures no matter how a magnetic field is strong so as to lead to

high intensity of stress possibly. It is obvious that the deformation of structures increases rapidly after they

are in the path of post-buckling and post-snapping through bending. In this case, there is a possibility that

the structures undergo plastic deformation when some stress is high over the yield point of the material

used. As the knowledge of authors, few research except for Littlefield (1996) has been found in literature to

report the magneto-mechanical coupling and interaction of ferromagnetic structures in affiliation with

plasticity, since the multi-coupling and multi-nonlinear problem of ferromagnetic structures with elastic–

plastic deformation in strong magnetic fields is much more complex and difficult to get an analysis of the
behaviors. For the situation of research to instability of elastic–plastic plates made of normal materials,

here, we have noted the work of Wu and Yu (1986), Liu et al. (1989), M€uuller et al. (1993), and Tvergaard
(1999) as examples.

In this paper, we will generalize the study into the magneto-elastic–plastic interaction and coupling for

ferromagnetic plate structures in strong magnetic fields in order to find the effect of plastic deformation on

the phenomena, especially, the critical magnetic values of buckling, snapping, and plastic yield which are

directly related to the safety of structures operated in strong magnetic fields. For this purpose, here, we

establish a numerical code to the analysis. In the following section, some essential equations and formulae
employed are briefly introduced. Following them, the methodology for the numerical code is displayed in

Section 3, while some numerical results to a case study of the unmovably simply supported beam-plate

made of soft ferromagnetic material in transverse and oblique magnetic fields are shown in Section 4.

Finally, some remarks and conclusions are given in Section 5.
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2. Basic equations

In this section, we briefly introduce some basic equations for the problem considered here. As shown in

Fig. 1, we consider a soft ferromagnetic beam-plate of unit width, length L, and thickness h in an applied
magnetic field of uniform distribution of magnitude B0. When a 6¼ 0, we refer to the plate as being in an
oblique magnetic field. Otherwise, it is called as in a transverse magnetic field when a ¼ 0. The elastic–
plastic relation of the material is taken as shown in Fig. 1(b), to which we denote the elastic constant of

Young�s modulus by Y , the linear-strain-hardening with the coefficient of hardening by H 0, and the yield

stress by rs. After that, according to the theory of plasticity (Owen and Hinton, 1980), the value of the
ultimate moment in the fully plastic condition to a thin beam-plate with rectangular cross-section can be

calculated in terms of the yield stress rs, i.e., Mp ¼ rsðbh2=4Þ.

2.1. Increment theory of plasticity

Here, we only quote those equations what we will employ in the analyses of the problem considered in

this article. From the theory of plasticity (Owen and Hinton, 1980; Kachanov, 1971), we know that the
increment of strain, deij, can be divided into two parts, elastic and plastic. That is

deij ¼ ðdeijÞe þ ðdeijÞp ð1Þ

where the subscripts ‘‘e’’ and ‘‘p’’, respectively, imply elasticity and plasticity; ‘‘i’’ and ‘‘j’’ are the index
corresponding to the Cartesian coordinate axes in the representation of Einstein�s rule of index. The elastic
increment of strain ðdeijÞe can be formulated by (Kachanov, 1971)

ðdeijÞe ¼
dr0

ij

2l
þ ð1� 2mÞ

3Y
dijdrkk ð2Þ

in which l and m are the elastic constants of shearing modulus and Poisson�s ratio, respectively; dij is the

Kronecker d-function; drlm ðl;m ¼ 1; 2; 3Þ and dr0
ij ði; j ¼ 1; 2; 3Þ are, respectively, the increments of stress

and deviatoric stress components. When the subscript indexes become same, e.g., l ¼ m, it implies sum-
mation of the quantity with respect to the repeated subscript indexes from 1 to 3 according to Einstein�s rule

Fig. 1. Schematic drawing of a soft ferromagnetic beam type plate in a uniform oblique magnetic field ða 6¼ 0Þ. When a ¼ 0, we call the
magnetic field as a transverse magnetic field. (a) Ferromagnetic beam-plate with unmovable simple supports at two ends in uniformly

distributed oblique magnetic fields; (b) the stress–strain relation of elastic–plastic material employed.
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of index. For the plastic increment of strain, it is known that this is in proportional to the gradient of the

plastic potential Q with respect to stress, i.e.,

ðdeijÞp ¼ dk
oQ
orij

ð3Þ

in which dk is the ratio factor, referred to as the plastic multiplier. In general case, the plastic potential Q is
chosen by a plastic yield function f such that Eq. (3) can be rewritten as

ðdeijÞp ¼ dk
of
orij

ð4Þ

For the case that the Mises yield criteria/function is employed here, we may get

of
orij

¼ r0
ij ð5Þ

Further, Eq. (4) can be reduced into

ðdeijÞp ¼ dkr0
ij ð6Þ

Here, r0
ij represents the deviatoric stress. Eq. (6) is attributed to the Prandtl–Reuss equation in the theory of

plasticity, to which a plastic methodology based on it is referred to as the flow theory of plasticity (Owen

and Hinton, 1980).

Substitution of Eqs. (2) and (4) into Eq. (1) leads to the strain–stress relation of the elastic–plastic

problem of the matrix form

de ¼ ½D	�1 dr þ dk of
or

ð7Þ

in which ½D	 is the matrix of elastic constants; the superscripts ‘‘)1’’ indicate the inverse of the matrix.
According to the flow theory of plasticity, we know that the strain–stress relations of Eq. (7) can be further

expressed as dr ¼ ½D	epde where ½D	ep is a matrix of elastic–plastic constants.

2.2. Bending equations of thin beam-plate

Here, for simplicity, we consider a beam type plate, i.e., a rectangular thin plate with unit width, made of

soft ferromagnetic material with the unmovable simple supports at two ends, and with the nonlinear de-

formation of van Karman�s type. Further, we assume that the plate consists of the parts of full plastic
elements and full elastic elements as doing in Owen and Hinton (1980). For this case, the differential

equation for bending of the plate may, similar to Xu (1990) for geometrical nonlinear beam-plate of
elasticity, after those quantities of the flexural rigidity and the axial internal force are replaced by ones of

that the plastic deformation is considered, be formulated by

D
 d
4w
dx4

� N 

x

d2w
dx2

¼ qemz ðxÞ; 0 < x < L ð8Þ

wðxÞjx¼0 ¼ 0;
o2w
ox2

����
x¼0

¼ 0 ð9Þ

wðxÞjx¼l ¼ 0;
o2w
ox2

����
x¼l

¼ 0 ð10Þ
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Here, w ¼ wðxÞ is the deflection function of the plate while x stands for the coordinate along the longitu-
dinal direction of the plate; D
 indicates the flexural rigidity of the plate; N 


x is the internal extension/

compress force along the longitudinal direction. For the case of bending deformation of a thin plate un-

dergoing the elastic–plastic deformation with strain–stress relation shown in Fig. 1(b), one can obtain the
deflection rigidity of the form

D
 ¼
D0; M < Mp

D0 1� D0
D0 þ H 0

� �
; M > Mp

8<
: ð11Þ

in which D0 ¼ Yh3=½12ð1� m2Þ	 is the flexural rigidity of the plate at where of cross-section only elastic
deflection generates. For the internal force N 


x , considering the condition of unmovable supports at two

ends and the constitutive relation of plasticity employed here as well as the geometrical nonlinearity of von

Karman�s type, we get

N 

x ¼ 6

h2L

Z L

0

D
 ow
ox

� �2
dx

0
@

1
Aþ H 0h

ðD0 þ H 0ÞL rslp ð12Þ

Here, lp means the length of total plastic elements.

2.3. Equations for magnetic fields

For the static state of a soft ferromagnetic plate in an applied magnetic field, we can introduce a scalar

magnetic potential / which is related to the magnetic field vector H by H ¼ �r/ when electric charge,
electric field and electric current are not taken into account in this research. After that, the Maxwell

equations of electromagnetic fields for linear electromagnetic medium can be reduced into the form (Zhou

et al., 1995)

r2/þ ¼ 0 in XþðwÞ ð13Þ

r2/� ¼ 0 in X�ðwÞ ð14Þ

with the connection equations

/þ ¼ /� on SðwÞ ð15Þ

lr
o/þ

on
¼ o/�

on
on SðwÞ ð16Þ

as well as the boundary condition

�r/� ¼ 1

l0
B0 at 1 ð17Þ

Here, XþðwÞ and X�ðwÞ, respectively, represent the inside and outside regions of the deflected ferromagnetic
plate; l0 and lr are the magnetic permeability of vacuum and the relative magnetic permeability of ferro-
magnetic medium, respectively; SðwÞ denotes the enclosed surface of XþðwÞ; n stands for the unit normal
vector outward to the surface SðwÞ. It should be noted that the regions XþðwÞ and X�ðwÞ, and the surface
SðwÞ all are dependent on the deflection w ¼ wðxÞ.
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2.4. Expression of magnetic force

Due to that the transverse deflection is prominent in the displacements of thin plates, here, we only

consider the application of transverse magnetic force exerted on the middle plane of plates. From Zhou and
Zheng (1997, 1999b), we take the equivalent transverse magnetic force as follows:

qemz ðxÞ ¼ l0lrv
2

fðHþ
n ðx; h=2ÞÞ

2 � ðHþ
n ðx;�h=2ÞÞ2g � l0v

2
fðHþ

s ðx; h=2ÞÞ
2 � ðHþ

s ðx;�h=2ÞÞ2g ð18Þ

which can commonly describe those two distinct experimental phenomena, i.e., the buckling of ferro-

magnetic plate in transverse magnetic fields (Moon and Pao, 1968; Zhou et al., 1995) and the increasing of
frequency of free vibration of the plate in in-plane magnetic fields (Tagaki et al., 1995; Zhou and Miya,

1998). Here Hþ
n and H

þ
s are the normal and tangential components of the magnetic field vectorH on the top

ðz ¼ h=2Þ and the bottom ðz ¼ �h=2Þ surfaces of the plate, respectively; and v ð¼ lr � 1Þ stands for the
magnetic susceptibility.

From the above equations, one can find that the mechanical deformation of the plate structure is

nonlinearly coupled with the magnetic fields, while the plate is nonlinear both geometrically and materially.

3. Numerical approach for magneto-elastic–plastic interaction

In order to quantitatively analyze the magneto-mechanical phenomena of the ferromagnetic plates with

the elastic–plastic deformation when the plates are subjected to strong magnetic fields, we use the increment
finite element method (IFEM) and an iterative approach to realize it.

3.1. Methodology of IFEM for elastic–plastic deformation

Dividing the beam-plate along longitudinal direction to the plate into N elements for the deflection of

plate, we get a system of nonlinear algebraic equations with the matrix form (Owen and Hinton, 1980):

½KT 	epfwg ¼ fRg ð19Þ

where fRg is the column with elements of equivalent load at nodes of element and is related to the magnetic
force of Eq. (18); fwg stands for the column of nodal deflection at the middle plane of plate; ½KT 	ep rep-
resents the global rigidity matrix which consists of the elements of flexural rigidity coefficients with either

elastic or plastic deformation, or both. Due to the geometric and material nonlinearity considered, it is

evident that we have the following dependence to the global rigidity matrix:

½KT 	ep ¼ ½KT ðfwg; frgÞ	ep ð20Þ

which means that the elements of the matrix are dependent upon both the deflection fwg and the stress frg
which are constrained by the elastic–plastic relation introduced above. In order to efficiently solve the

strong nonlinear simultaneous algebraic equations of Eq. (19), here, we take the increment approach of

IFEM, that is

½KT ðfwgðj�1Þ1 ; frgðj�1Þ1 Þ	DfwgðjÞ1 ¼ DfRg ð21Þ
in which ½KT ðfwgðj�1Þ1 ; frgðj�1Þ1 Þ	 ¼ ½KT ðfwg; frgÞ	jfwg¼fwgðj�1Þ

1
;frg¼frgðj�1Þ

1

where fwgðj�1Þ1 ¼ fwg0 þ Dfwgðj�1Þ1 and

frgðj�1Þ1 ¼ frg0 þ Dfrgðj�1Þ1 are, respectively, the iterating values of fwg1 and frg1 corresponding to the
load that a pre-specified increment load DfRg1 is added. Here, the initial iterating values of fwg1 and frg1
are, respectively, taken as fwgð0Þ1 ¼ fwg0 and frgð0Þ1 ¼ frg0, where fwg0 and frg0 are the solutions of the
nonlinear equation (19) before the increment load DfRg1 is added, or fRg ¼ fRg0. Thus, we successively
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obtain the system of linear algebraic equations of Eq. (21) to get the solution sequences DfwgðjÞ1 and DfrgðjÞ1
(j ¼ 1; 2; 3; . . .) which are the increment parts of iterated values of fwg1 and frg1, respectively. In this ite-
ration process, the iterating values of them will be replaced by the iterated values after they are got. The

iteration is persistently carried out until some pre-specified conditions of precision criterion

kfwgfjg1 � fwgðj�1Þ1 k < d1 ð22Þ

kfrgfjg1 � frgðj�1Þ1 k < d2 ð23Þ

are satisfied. Here, d1 and d2 are pre-given precision values. Then, we get the values of fwg1 ¼ fwgðjÞ1 and

frg1 ¼ frgðjÞ1 for the case fRg1 ¼ fRg0 þ DfRg1.
Now, we replace the solutions fwg1 and frg1, and the load fRg1 to fwg0, frg0, and fRg0, respectively.

And repeating the above calculations for a new load with load increment DfRg, thus, we get a sequence of
numerical solutions of them as long as the load increments are pre-chosen or appointed. It should be noted
that we should evaluate which one element is either elastic or plastic in deformation in each step of cal-

culation mentioned above, which consumes much more time of calculations except for the iteration for

nonlinearity.

3.2. Finite element method for magnetic fields

From Section 2.3, we know that once the deflection of plate is known or given, one can get the distri-

bution of magnetic fields. In this case, the boundary-value problem for magnetic fields, when the plate

deflection is known, is linear. Hence, the solution of Eqs. (13)–(17) for the magnetic fields corresponds to

that of the minimization of functional of magnetic energy (Zhou et al., 1995)

P½/	 ¼ 1
2

Z
X�ðwÞ

l0ðru�Þ2 dV þ
Z

XþðwÞ
l0lrðruþÞ2 dV þ

Z
S0

n0 � B0u� ds ð24Þ

Here, S0 is a surface which encloses and is far away the ferromagnetic plate, while n0 is a unit vector

outward normal to the surface S0. Dividing the domains inside and outside the ferromagnetic plate, and
applying to Eq. (24) similar to Zhou et al. (1995, 2000), we get a system of linear algebraic equations with

matrix form

½KemðfwgÞ	fUg ¼ fB0g ð25Þ

where the unknown column fUg consists of those values of magnetic potential / at the nodal points of
elements; fB0g is the column of the magnetic fields related to those of applied magnetic field B0 at nodal

points on the boundary surface S0; and ½KemðfwgÞ	 is a global matrix of rigidity for the magnetic fields and is
dependent on the deflection fwg. When the deflection fwg and the applied magnetic field B0 are known, we

can get the solution of magnetic potential by solving Eq. (25). Further, the magnetic field vector H may be

obtained.

3.3. Iteration for coupling of deformation and magnetic fields

According to Eqs. (18) and (19), we find that the equivalent magnetic force in Eq. (18) is dependent upon

the distribution of magnetic fields of Eq. (25) through the expression of magnetic force of Eq. (18), that is,

fRg ¼ fRðfUgÞg, while the distribution of magnetic fields from Eq. (25) is wholly related to the deflection of
plate fwg which is determined by Eq. (19) related to the applied magnetic force fRg, or fUg ¼ fUðfwgÞg.
That is to say, the deflection of plate and the distribution of magnetic fields are nonlinearly coupled each

other. In order to solve this coupling, we use the iteration like
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½KT ðfwg1;n; frg1;nÞ	fwg1;n ¼ fRðfUg1;nÞg ð26Þ

½Kemðfwg1;nÞ	fUg1;nþ1 ¼ fB0g1 ð27Þ

in which fB0g1 is a column of pre-given applied magnetic field B0, and the subscript n ð¼ 1; 2; 3; . . .Þ rep-
resents the iterative number.

4. Numerical results and discussions (case study)

In this section, we display some numerical results of buckling/snapping, bending and post-buckling/

snapping for the elastic–plastic ferromagnetic plate with unmovable simple supports at two ends, and the

effect of plastic deformation on these behaviors in a case study. The material and geometric parameters

used in the case study are listed in Table 1. Using the numerical approach introduced in the previous

section, firstly, we take a numerical test to evaluate the effectiveness of the numerical code for the case that

the plate is only elastic. To this case, we get almost same results as those reported in Zhou et al. (2000) for

the buckling, bending and post-buckling/snapping of elastic beam-plates with unmovable simple supports

at the ends. Next, the numerical simulation of the characteristics of the ferromagnetic plate with magneto-
elastic–plastic interaction is carried out.

Figs. 2 and 3 plot the characteristic curves of deflection of plate at position x ¼ 2L=5 varying with the
magnitude of applied magnetic field, B0, with different incident angle a. In Fig. 2 exhibits the results of
buckling/snapping and post-buckling/snapping phenomena for the plate of magneto-elastic–plastic inter-

Table 1

Material and geometrical parameters in the case study of numerical analysis

Young�s modulus
Y (Pa)

Poisson�s
ratio m

Relative

magnetic

permeability lr

Yield stress

rs (Pa)
Harden coeffi-

cient H 0 (Nm)

Length

L (m)
Thickness

h (m)

2.1� 1011 0.3 1000 2.1� 108 10000 1.00 0.01

 

Fig. 2. Characteristic curves of deflection at x ¼ 2L=5 versus the magnitude, B0, of applied magnetic field with small incident angles
0�6 a6 4� to show the phenomena of buckling/snapping, bending, and post-buckling/snapping of the plate with magneto-elastic–
plastic interaction. Here, ‘‘p1�’’ means that the plastic deformation is considered in the numerical code and the applied magnetic field
has incident angle of 1�, and other notations in the legend have similar meaning.
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action when the incident angle is small, i.e., a6 4�, whereas the path of bending deflection varying with the
magnitude of applied magnetic field is shown in Fig. 3 when aP 7�. When the plate is located in a
transverse magnetic field (a ¼ 0�), it is found from Fig. 2 that the bending deflection suddenly generates

from the trivial or zero deflection ðwðxÞ � 0Þ after the magnitude of magnetic field reaches to a critical
value, which is the buckling phenomenon. When an oblique magnetic field is applied to the plate, Figs. 2

and 3 display that there is bending deformation before deflection increases rapidly as the magnitude of

magnetic field is close to a critical value. After the magnitude is over the critical value with small increment,

it is found that the plate deforms larger sharply when the incident angle is small, that is, the snapping

phenomenon occurs, which corresponds to the jumping of deflection configuration from two semi-waves to

single semi-wave (the results will be shown later as seen in Fig. 7). Due to that the geometric nonlinearity is

taken into account in this numerical code, the path of deflection of post-buckling and post-snapping is

tracked in the numerical simulation. From Figs. 2 and 3, we find that the level of jumping of the deflection

changing is dependent upon the incident angle. When a ¼ 0�, the jumping of buckling instability is
sharpest. The snapping phenomenon of the plate in oblique magnetic field occurs before plastic deflection is

generated when 0� < a6 1�, while plastic deflection is generated in the plate, which corresponds to the first
jumping displayed in the curves, before the snapping takes place in the interval 0�6 a6 4�. When a P 7�,
we find from Fig. 3 that there is only the jumping caused by plastic deflection rather than snapping in-

stability in the deflection path. The critical magnetic field when the plate undergoes plastic deformation,

which is referred to as the yield magnetic field, decreases with increasing of the incident angle as shown in

Fig. 4. Those denoted by ‘‘elastic region’’ and ‘‘elastic–plastic region’’ in Fig. 4, which are divided by the

curve of dependence of the yield magnetic field on incident angle, imply that the plate structure, respec-

tively, undergoes only elastic and/or elastic–plastic deformation when the parameters of applied magnetic

field and incident angle are located in the corresponding region. Fig. 5 displays the evolution of plastic

region(s) in the plate with the magnitude of applied magnetic field with incident angle a ¼ 2� as an example.
Fig. 5(b) plots two sub-regions of the plastic deflection in the plate when B0 ¼ 0:37 T, while Fig. 5(a) gives
the plastic region(s) varying with the magnitude of applied magnetic field. To find the plastic region(s) from

Fig. 5(a), one can draw a straight line paralleling to the horizontal axis of the figure to scale a magnitude of

applied magnetic field. When the line intersects the curve in the figure, the plastic regions emerge with the

end points corresponding to those intersect points on the closed curves which are constituted by the curve

Fig. 3. Characteristic curves of deflection at x ¼ 2L=5 versus the magnitude, B0, of applied magnetic field with larger incident angles,
a P 7�. The notations in legend have the same meaning as in Fig. 2.
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displayed in the figure and the drawn line. From the configuration of deflection, it is also found that there is
anti-symmetry of deflection waveform when the plate is only in elastic deformation, whereas the anti-

symmetry is broken down after the plate enters plastic deflection (see Fig. 5(b) shown an example of

asymmetric plastic region and Fig. 7 plotted the asymmetric configuration of deflection curves).

Fig. 5. A pattern of plastic area in the plate indicates where in the plate undergoes plastic deformation as the magnitude of applied

magnetic field increases (a ¼ 2�): (a) plastic area varying with magnitude of the applied magnetic field; (b) B0 ¼ 0:37 T.

  

Fig. 4. The curve of yield magnetic field By0 varying with incident angle a when the plate just entering plastic deformation. ‘‘Elastic
region’’ means that the plate generates only elastic deformation if the parameters ða;B0Þ are located in the region, whereas ‘‘Elastic–
plastic region’’ implies that the plate undergoes both elastic and plastic deformation when the parameters (or applied magnetic field)

are in this region.
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Corresponding to the plate without consideration of plastic deflection, i.e., the magneto-elastic plate with
geometrical nonlinearity, we display a comparison of the results obtained in this paper and those from the

magneto-elastic plate with same material and geometrical parameters except for those related to plasticity,

which is plotted in Fig. 6. In Fig. 6, the symbols of ‘‘e’’ and ‘‘p’’ imply those results of the magneto-elastic

plate and the magneto-elastic–plastic plate, respectively. It is shown that the critical values of applied

magnetic field of the magneto-instability for the elastic–plastic plate are smaller than those for the elastic

plate when the plates are located in the magnetic field with same incident angle. The deviation of critical

values between them increases with decreasing of the incident angle. This result tell us that the stability of

the plate is sensitive to the plastic deformation when incident angle is not large enough, which is most
important to the design of safety of the structure. As same as those given in Zhou et al. (2000) for the

deflection configuration of the plate with elastic deformation only, Fig. 7 exhibits an evolution of configu-

ration of the plate with elastic–plastic deflection when the plate is in an oblique magnetic field with small

angle (a ¼ 2�). It is known from the figure that the deflection configuration of the plate jumps from two

Fig. 6. Comparison of the deflection paths between the elastic plate and the elastic–plastic plate made of soft ferromagnetic materials

under applied magnetic fields. Here, ‘‘e’’ and ‘‘p’’ in the figures imply that the plate is dealt with by elasticity and elastic-plasticity,

respectively: (a) for small incident angle; (b) for larger incident angle.

Fig. 7. Changing of configuration of deflection of the plate in an oblique magnetic field with the magnitude of the magnetic field

(a ¼ 2�).
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semi-waves to a single semi-wave as the magnitude of applied magnetic field increases across the critical

value of the magneto-instability, which is similar to the phenomenon in Zhou et al. (2000). The numerical

results show that when a6 5�, this jumping phenomenon from two semi-wave deflection configuration into
a single semi-wave one occurs, while does not when aP 7�. Since this jumping leads to a rapid increase of
deflection of the plate at position x ¼ 2L=5, thus, there is a sudden drop of the deflection as seen in Figs. 2
and 3 for a somewhere between 4� and 7� when the applied magnetic fields is large enough (about B0 > 0:7
T).

5. Conclusions and remarks

A numerical code for the magneto-elastic–plastic interaction of ferromagnetic beam-plates with geo-

metrical nonlinearity is established and some numerical results for a case study of the buckling/snapping,

bending, post-buckling and post-snapping behaviors to the soft ferromagnetic beam-plate with geometrical
nonlinearity and unmovable simple supports at two ends are displayed in this paper. When the incident

angle of applied magnetic fields is in the region of 0�6 a6 1�, the plastic deflection is generated only after
the plate loses its stability, while the plate undergoes plastic deflection before the plate snaps when aP 2�. It
is found that the critical magnetic field for the magneto-stability, either buckling when a ¼ 0� or snapping if
a 6¼ 0�, of the plate structure is sensitive to the plastic deformation that makes the critical value lower
comparing to the corresponding elastic plate. As the incident angle a increases, the yield magnetic field at
which the plate generates plastic deformation decreases.
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